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Abstract

w Ž 3 . x 2Palladium complexes prepared in situ from Pd h -C H Cl and a number of chiral ligands with pyridine sp -nitrogen3 5 2

donators were assessed as chiral catalysts for the allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethyl
malonate. Enantioselectivity of up to 64% was obtained. q 1998 Elsevier Science B.V.
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1. Introduction

In the last few years, chiral derivatives with
pyridine sp2-nitrogen donators have attracted
increasing interest because of their utility as
chiral ligands in metal complexes for enantiose-

w xlective catalysis 1–15 . Despite this, chiral
pyridine derivatives has been scarcely used as
ligands for enantioselective palladium-catalysed

w xallylic substitutions 16,17 .
Continuing our interest in the synthesis and

application of chiral pyridine derivatives as lig-
ands for metal complexes in enantioselective

w xcatalysis 18–22 , we have evaluated the poten-
tial utility of these derivatives as ligands in the
asymmetric palladium catalysed allylic substitu-

w xtions 23–28 .

) Corresponding author. Tel.: q39-79-229539; fax: q39-79-
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In this paper we report the results of catalytic
asymmetric allylic alkylation of 1,3-diphenyl-
prop-2-enyl acetate with dimethyl malonate by
the complexes formed in situ from allylpalla-

w Ž 3 . xdium chloride dimer Pd h -C H Cl and ten3 5 2

different pyridine ligands.
These ligands were prepared according to

reported procedures and their configurations are
illustrated in Scheme 1. There are four 2,2X-bi-

Ž . X Y Žpyridines 1–4 , two 2,2 :6,2 -terpyridines 5,
. Ž .6 , two phenanthrolines 7, 8 and two aminopy-

Ž .ridines 9, 10 . Bipyridines, terpyridines and
phenanthrolines present the 6,6-dimethyl-
norpynan-2-yl group as the common chiral sub-
stituent. Both monosubstituted and disubstituted
C -symmetric derivatives have been tested.2

Palladium catalysts where prepared in situ
w Ž 3from allylpalladium chloride dimer Pd h -

. xC H Cl and the ligands, using a molar ratio3 5 2

of palladium to ligand of 1 to 4. These catalysts
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Scheme 1.

Ž .2.5 mol% were treated according to the usual
protocol with 1,3-diphenylprop-2-enyl acetate,
three equivalent of the nucleophile, generated
from dim ethyl m alonate with N ,O -

Ž . Ž .bis trimethylsilyl acetamide BSA and a small
w xquantity of potassium acetate 29 . The reactions

were carried out in methylene chloride at room
temperature or at reflux temperature when the
ligand provided an insufficiently reactive palla-
dium catalyst.

The following considerations can be made
from the data reported in Table 1:

Ž . X1 2,2 -Bipyridines are able to provide effec-
tive palladium catalysts but low enantiomeric

excesses are achieved. The enantioselectivity
increases as the substituent on the 6-position

Ž .becomes larger entry 1 versus 2, 3 .
Ž .2 The introduction of a second substituent

in the 6X-position of the bipyridine 3 to give the
related C -symmetric bipyridine 4 causes a drop2

both of the catalytic activity and of the enantios-
Ž .electivity entry 4 versus 5 .

Ž .3 The monosubstituted terpyridine 5 shows
a comparable reactivity and enantioselectivity

Žwith respect to the related bipyridine entry 7
.versus 4 , whereas the disubstituted C -symmet-2

ric terpyridine 6 is less reactive than the mono-
Ž .substituted terpyridine 5 entry 8 versus 7 , but
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Table 1
Allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethyl malonatea

b c d eŽ . Ž .Entry Ligand Temperature 8C Reaction time h Conv. Yield % Ee Conf.

1 1 r.t. 4 100 84 0 –
2 2 r.t. 5 100 82 2 R
3 3 r.t. 120 50 77 30 R
4 3 reflux 7 100 72 32 R
5 4 r.t. 120 11 n.d. n.d. n.d.
6 4 reflux 72 65 46 0 –
7 5 reflux 7 100 82 40 R
8 6 reflux 48 90 75 38 R
9 7 r.t. 1 100 84 14 S

10 8 r.t. 2 100 82 50 R
11 9 r.t. 24 100 72 64 R
12 10 r.t. 1 100 84 8 S

a w Ž 3 . x Ž . Ž . Ž .Reaction of Pd h -C H C 2.5 mol% and the ligand 0.08 mmol with 1,3-diphenyl-2-propenyl acetate 0.8 mmol , dimethyl malonate3 5 2
Ž . Ž . Ž . Ž . Ž . Ž .2.4 mmol , N,O-bis trimethylsilyl acetamide BSA 2.4 mmol and potassium acetate 3 mol% in CH Cl 4 ml at room or refluxed2 2

temperature.
b Determined by 1H-NMR of the crude reaction mixture.
c Isolated yields based on converted starting material.
d 1 Ž .Determined by H-NMR using Eu hfc as chiral shift reagent.3
e w xThe assignment is based on the sign of the optical rotation 30 .

more reactive than the C -symmetric bipyridine2
Ž .4 entry 8 versus 6 . The stereochemical out-

come is rather surprising on the base of a very
recent study. Indeed, it has been demonstrated
that in solution 2,2X:6X,2Y-terpyridine allyl palla-

Ž .dium II complexes are present in a dynamic
equilibrium between h1- and h 3-allyl isomeric
forms. In the former case the terpyridine be-
haves as terdentate ligand whereas in the latter
coordinates the palladium atom in a bidentate

w xfashion 31 . If so, ligand 5 could form two
h 3-allyl complexes according to whether the
central pyridine coordinates the palladium to-
gether with the other substituted or unsubsti-
tuted pyridine, whereas with the C symmetric2

ligand 6 can be formed only one palladium
h 3-allyl complex. Both ligands 5 and 6 show
the same enantioselective ability but they pro-
vides very different catalytic species.

Ž .4 Phenanthrolines give very active catalysts
whose reactivity and enantioselectivity depend
on the distance of the chiral substituent from the

Ž .heterocycle nitrogen entry 9 versus 10 . In the
phenanthroline–bipyridine–terpyridine series in

which the same substituent is present on the
heterocycle, the phenanthroline 8 gives not only
the more reactive catalytic species but also the

Ž .more enantioselection entry 10 versus 4 and 7 .
Ž .5 The aminopyridines 9–10 which differ

only in the methyl substitution at the pyrrolidine
nitrogen are effective ligands with the sec-
ondary amine 9 which affords a better enantios-
election but with a slower reaction rate. More-
over, these ligands gave opposite configuration
of dimethyl 1,3-diphenylprop-2-enylmalonate,
indicating that the steric course of the reaction
depends on both the stereogenic centres: that on
carbon and that on the pyrrolidine nitrogen atom
Žwhich is formed after coordination to palla-

.dium .
In conclusion, this preliminary investigation

indicates that chiral bipyridines and phenanthro-
lines are active ligands for palladium catalysed
asymmetric allylic alkylation, whereas ter-
pyridines do not appear to be useful ligands for
this catalytic process. Moreover, the use of C -2

symmetric ligands is detrimental for both cat-
alytic activity and enantioselectivity. Finally,
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the potential utility of aminopyridines has been
w x 1confirmed 32 . Further studies aim at the

synthesis and application of new chiral
bipyridines and phenanthrolines for palladium
catalysed asymmetric allylic alkylation are un-
der way in our laboratory.

2. Experimental

2.1. Materials

ŽDimethyl malonate, N,O-bis trimethyl-
. w Ž 3 . xsilyl acetamide and Pd h -C H Cl were3 5 2

Ž .purchased from Aldrich. Rac- E -1,3-diphenyl-
w x2-propenyl acetate 33 and the pyridine ligands

1–10 were prepared according to reported pro-
Ž . Ž . Žcedures: S -6 - 2-m ethy lpropyl -2- 2-

. w x Ž . Ž .pyridinyl pyridine 1 34 , S -6- 2-phenylethyl -
Ž . w x w2- 2-pyridinyl pyridine 2 35 , 6- 6,6-dimethyl-

x X w x Xnorpynan-2-yl -2,2 -bipyridine 3 35,36 , 6,6 -
w x Xbis- 6,6-dimethylnorpynan-2-yl -2,2 -bipyridine
w x w x4 36 , 6- 6,6-dim ethylnorpynan-2-yl -

X X Y w x X w2,2 :6 ,2 -terpyridine 5 37 , 6,6 -bis- 6,6-di-
x X Ymethylnorpynan-2-yl -2,2 :6,2 -terpyridine 6

w x w x37 , 3- 6,6-dimethylnorpynan-2-yl -5,6-dihy-
w x wdro-1,10-phenanthroline 7 38 , 2- 6,6-dimethyl-

xnorpynan-2-yl -5,6-dihydro-1,10-phenanthroline
w x w x w x8 39 , 2- 1-methyl-2-pyrrolidinyl pyridine 9 40

Ž . w xand 2- 2-pyrrolidinyl pyridine 10 39 .

2.2. Allylic alkylation of 1,3-diphenyl-2-pro-
penyl acetate with dimethyl malonate: General
procedure

ŽA solution of the ligand 0.08 mmol, 10
. w Ž 3 . x Ž .mol% and Pd h -C H C 8 mg, 2.5 mol%3 5 2

Ž .in dry CH Cl 2 ml was stirred at room2 2

temperature for 15 min. This solution was treated
Ž .successively with a solution of rac- E -1,3-di-

1 Recently, we have reported that diastereomeric pure 8-amino
Ž .substituted 5S,7S -2-phenyl-5,6,7,8-tetrahydro-6,6-dimethyl-

methanoquinolines are active ligands in enantioselective palla-
dium catalysed allylic substitutions, enantioselectivities up to 68%
were obtained.

Ž .phenyl-2-propenyl acetate 0.202 g, 0.8 mmol
Ž . Žin CH Cl 2 ml , dimethyl malonate 0.316 g,2 2
. Ž .2.4 mmol , N,O-bis trimethylsilyl acetamide

Ž . Ž .BSA 0.488 g, 2.4 mmol and anhydrous
Ž .potassium acetate 2.4 mg, 3 mol % . The reac-

tion mixture was stirred at room or reflux tem-
Ž .perature for the appropriate time see Table 1

until conversion was complete as shown by
Ž .TLC analysis light petroleum:etherr3:1 . The

Ž .reaction mixture was diluted with ether 25 ml ,
washed with ice-cold saturated aqueous ammo-
nium chloride. The organic phase was dried
Ž .Na SO and concentrated under reduced pres-2 4

sure. The residue was purified by flash chro-
Ž .matography light petroleum:etherr3:1 to af-

ford dimethyl 1,3-diphenylprop-2-enylmalonate.
The enantiomeric excess was determined from
the 1H-NMR spectrum in the presence of enan-

Ž .tiomerically pure shift reagent Eu hfc ; split-3

ting of the signals for one of the two methoxy
groups was observed.
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